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Abstract

We apply the Tannaka—Krein duality theory for quantum homogeneous spaces, developed
in the first part of this series of papers, to the case of the quantum SU(2) groups. We
obtain a classification of their quantum homogeneous spaces in terms of weighted oriented
graphs. The equivariant maps between these quantum homogeneous spaces can be charac-
terized by certain quadratic equations associated with the braiding on the representations
of SU4(2). We show that, for |g| close to 1, all quantum homogeneous spaces are realized
by coideals.
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Introduction

This is a continuation of our previous paper on the Tannaka—Krein duality for quantum ho-
mogeneous spaces. In this paper, we apply our general machinery to the case of the ‘quantum
SU(2) group’ SU,(2), where 0 < |¢| < 1 [29} 30].

The study of SU,(2) and its actions on noncommutative spaces has special significance in the
study of compact quantum groups. The quantum SU(2) group was and remains the prime
example of the matrix quantum group theory initiated by S.L. Woronowicz. Because of its
close connection to the Drinfeld-Jimbo quantized universal enveloping algebra U, (sl2(C)), it
gives rise to an interesting deformation of the finite-dimensional representation theory of sly(C).

Our goal here is to study operator algebras which allow SU,(2), for some ¢, as an ergodic
symmetry group. We shall refer to such operator algebras as quantum homogeneous spaces for
SU,(2). For ¢ = 1, A. Wassermann’s classification [28] of the ergodic actions of the classical
Lie group SU(2) implied that it has only ‘classical’ quantum homogeneous spaces, in the sense
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that any such action can be obtained by induction from a (projective) representation of a closed
subgroup of SU(2). In particular, there are only countably many isomorphism classes of such
actions.

The situation for SU,(2) with |¢| < 1 is drastically different. First, P. Podle$ showed that there
is a continuum of non-isomorphic ‘quantum 2-spheres’ over SU,(2) which do not necessarily
correspond to quantum subgroups. R. Tomatsu [23] extended this by classifying all quantum
homogeneous spaces over SU,(2) which are of coideal type. In another direction, J. Bichon,
A. de Rijdt and S. Vaes [5] discovered that, for |¢| small enough, a family of non-coideal type
quantum homogeneous spaces exists, admitting large multiplicities for spectral subspaces. This
diversity makes it important to understand the general structure of a quantum homogeneous
space for SU,(2), and this will be the main focus point of this paper.

In [§], it was shown that the quantum homogeneous spaces over a compact quantum group G
can be classified by the indecomposable semi-simple module C*-categories over the tensor C*-
category of finite-dimensional unitary representations of G. In a purely algebraic setting, finite
indecomposable semi-simple module categories for Rep(SL,(2)) were classified in [9]. However,
in the case of SU,(2), the extra positivity conditions which are present mean that we have to
further refine the classification of purely algebraic module categories over Rep(SU,(2)). On the
other hand, we can treat the case of module categories having infinitely many irreducible objects
(which was recently treated also in the purely algebraic case in [I1]). Secondly, because of the
above positivity, we can label the parameter space of our classification in a more convenient
way since all matrices concerned can be diagonalized. We first introduce some terminology.

Definition. An oriented graph T' consists of a countable set I'©) the set of wvertices, and a
countable set '™ the set of (oriented) edges, together with two maps I'™ = TO called

the source and target map. In particular, we allow an infinite number of Verticés and edges,
and multiple edges as well as loops at vertices. A cost (or weight) on an oriented graph is a
positive real valued function W: I' — R* on the edge set. When v is a vertex, the source cost
W (v) € [0, +0o0] is the sum of the costs of all the edges leaving from v. We call an oriented graph
symmetric if it can be equipped with an involution e — € on the edge set which interchanges
source and target vertex of each edge. We call a cost on a symmetric graph balanced if one can
choose an involution satisfying W (e)W (e) = 1.

Definition. Let I' be an oriented graph, and let T be a nonzero real number. A fair and
balanced T'-cost on T" is a balanced cost on I' such that the source cost at any vertex is equal
to |T'|, and with an even number of loops at each vertex for the case T > 0. A graph with a
fair and balanced T-cost is also called a fair and balanced T-graph.

Remarks. 1. We stress that in the above definitions, the involution is not part of the data
set. More precisely, an isomorphism between two fair and balanced T-graphs (I';, W;) is
simply a couple of bijective maps ¢*): T’ §’“) — Fék) which intertwine the source, target

and weight maps.

2. It is easily seen that the degree deg(I') = sup, #{e | s(e) = v} of a fair and balanced
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T-graph I is bounded. More precisely, deg(T') < T?.

3. Another way to look at a fair and balanced cost is by considering the associated ‘random
walk’, which assigns to each edge the probability
Wi(e) Wi(e)

- Zf,s(e):s(f) W(f) - |T| .

Then we see that, having fixed T', the random walk P completely determines W, and
the only condition imposed on P is that P(e)P(€) = T2 (which one can could call
T~2-reciprocality). However, we chose to work with the cost W since the condition
W (e)W (e) = 1 better reflects the crucial role of the inversion, and since the probabilistic
nature of the formulation is not fundamentally used yet in the present work.

Ple)

Theorem (Theorem 2.4)). For 0 < |q| < 1, the quantum homogeneous spaces over SU,(2) are
classified, up to equivariant Morita equivalence, by connected fair and balanced q + ¢~ *-graphs.

The connected fair and balanced 2-graphs are easy to classify in a direct way. Hence we
obtain in particular a more conceptual proof (Proposition [4]) of the above mentioned result of
Wassermann for SU(2). In the quantized setting, when |q¢| is close enough to 1, our classification
implies that any quantum homogeneous space is of coideal type (see Theorem [4.3)), naturally
generalizing the classical case ¢ = 1. On the other hand, as ¢ gets smaller, there arises a
profusion of ergodic actions, since any symmetric graph I' with bounded degree (and an even
number of loops at each vertex) admits at least one fair and balanced T-cost for T' = £||T'|.

Here is a short summary of the contents of this paper. In the first section, we recall the
definition of the quantum SU(2) groups, and briefly discuss some of the main results of [§] for
these particular quantum groups. In the second section, we prove the theorem stated above. The
main observation here is that the representation category of SU,(2) is in essence the Temperley—
Lieb category ([30], [1]), whose universal property can be exploited to encode semi-simple C*-
module categories over Rep(SU,(2)) in terms of the combinatorial structure of weighted graphs.
In the third section, we give some more information on connected fair and balanced T-graphs.
In the fourth section, we give a more concrete classification of SU,(2)-homogeneous spaces in
the region |q| € (1 — ¢, 1], for some small €. In the fifth section, a connected fair and balanced
q + g -graph (I', W) is shown to give rise to a particular, non-ergodic action on a *-algebra
o7, having the associated ergodic actions as its corners. The *-algebra </ can be explicitly
given in terms of generators and relations determined by the weighted graph (I',w). In the
sixth section, we show that equivariant maps between the quantum homogeneous spaces over
SU,(2) can be determined by certain quadratic equations on isometries associated with the
weighted graphs. Finally, in the seventh section, we use some of the above results to determine
structural properties of the C*-algebra underlying an ergodic action of SU,(2): we show that
the C*-algebra is of type I if and only if it is of coideal type, and that the K-groups can be
computed from the associated graph, using the resolution of the Baum—Connes conjecture for
SU,(2) obtained by Voigt.
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1 Preliminaries

Throughout the paper ¢ is a real number with 0 < |g| < 1. The g-integer (¢7" — ¢")/(¢"! — q)
is denoted by [n],. We shall frequently employ its absolute value |[n],|, which we will denote

by [n],.
The cyclic group of order n is denoted by Z,.

We will freely use notation and terminology as introduced in [8]. Although we shall briefly
recall these notations when necessary, the reader is nevertheless strongly encouraged to consult
[8] beforehand, particularly its Section 2 and the Appendix.

Definition 1.1. The *-algebra P(SU,(2)) of regular functions on the compact quantum group
SU,(2) is the universal unital *-algebra over C with generators u;;, where 7, j € {1, 2}, subject
to the relations

(1.1) (uzl uiz) _ < 1£212 —C_IU21)
Ugy U —q "ui2 U
and
uyy uy ) funn wie un wig [ui; uy; 10
(1.2) 2 — ot .
Upg Ugy/ \U21 U2 Ug1 Uz /) \Upp Ugo 01
It is a Hopf *-algebra whose coproduct is defined by
A(ug) = uin @ ury + Ui ® ug;

for any 7, j € {1, 2}.

Consider the matrix u € My(P(SU4(2))) with components (u;;);;, and the matrix u with com-
ponents (u;);;. If we put

(13) "= <—sgn<?z>|q|% |qf> |

the defining relations (L)) and (L.2) simply say that u is unitary and @ = F~luF.

Remark 1.2. At the classical limit ¢ = 1, we obtain the Hopf *-algebra of the matrix coefficients
of finite-dimensional unitary representations of SU(2). On the other extreme, when ¢ = —1,
the quantum group SU_;(2) can be interpreted as the free orthogonal quantum group O5 ([3]).
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Let N be the set {0,3,1,2,...} of nonnegative half integers. The highest weight theory gives
a labeling of isomorphism classes of irreducible objects in Rep(SU,(2)) by iN. That is, for
each n € %N , we have an irreducible representation u,,, unique up to isomorphism, having the
classical dimension 2n + 1, and the quantum dimension [2n + 1],. The tensor product of two

such representations decomposes the same way as in the classical case:

Uy, DU, = Ulm—n)| S Ulm—n|+1 D D Untn-

The first nontrivial irreducible representation v = w;/ is of special importance. It can be
realized on a 2-dimensional Hilbert space . » with an orthonormal basis (e1, e2), endowed with
the comodule structure d(e;) = €1 ® uy; + e2 ® ug;. Thus, the generators (u;;);; of P(SU4(2))
are precisely the matrix coefficients for this choice of basis.

The matrix F' is related to the duality for u. Namely, the linear map

(1.4) Ry,:C— J)®@ ), N— A <— sgn(q) |g ™ e1 ®es + g ea @ 61) .
is an intertwiner from wu, to u @ u, and satisfies the equation

(1.5) (R ®@1)(1® Ry) = —sgn(g)ida, RyRy = [2]qid,.

In particular, it follows that u itself is a dual object for u, and (R,, —sgn(q)R,) gives a pair of
duality morphisms. We then have that Fe; = (ef ® id)R,, for i € {1,2}.

Definition 1.3. Let C be a strict tensor C*-category. We call a couple (x, R) a g-fundamental
solution in C if x is an object in C, and R € Mor(l¢, z ® ) satisfies the condition (LH) for
(z,R) in place of (u, R,).

We call two ¢-fundamental solutions (z, R) and (y,S) equivalent if there exists a unitary mor-
phism U from x to y such that S = (U ® U)R.

By the above definition, if (z,R) is a g-fundamental solution, one has z = = by the duality
morphism pair (R, —sgn(q)R).

The following theorem is then well-known in one or another form. It states that the rep-
resentation category of SU,(2), which can also be realized as the Karoubi envelope of the
Temperley-Lieb category, is the universal tensor C*-category generated by a g-fundamental
solution.

Theorem 1.4 (Chapter XII of [25], Remark 2.2.4 in [9], Lemma 6.1 of [31], Theorem 6.2 of [1§],
Sections 6-8 of [19]). Let C be a strict tensor C*-category, and let (x,R) be a q-fundamental
solution in C. Then there exists a unique strict tensor C*-functor

F: Rep(SU,(2)) = C
such that Fu = x and such that R equals Ry = F(R,).

Moreover, two strict tensor C*-functors F and G from Rep(SU,(2)) into C are tensor equivalent
if and only if the q-fundamental solutions (Fu, Rx) and (Gu, Rg) are equivalent.
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Proof. The first part of the theorem as stated is found most explicitly, in the *-setting, in [19].
However, one can easily modify the version in [25] to accommodate for the *-structure. The
second part is not found explicitly in these references, but can be deduced easily from their
techniques: given an equivalence U between (Fu,Rz) and (Gu, Rg), we get a map

Tuon: Fu®) = Fu)® 5 G(u)® = G(usm).

Using that morphisms between u®" and u®™ can be expressed as algebraic combinations of R,
and R}, it follows that the above map is natural. It can then be extended to the desired tensor
equivalence. O

Remark 1.5. The strictness assumption is not essential, since, in this particular case, any
strong tensor C*-functor from Rep(SU,(2)) to C is equivalent with a strict one.

Let J be an index set. We recall that 5}] is the rigid tensor C*-category of J x J-graded
Hilbert spaces € = @, yes o such that sup, Y, (dim(s,) + dim(77,,)) < . Applying
Theorem [[4] to this category (which for all intents and purposes may be assumed strict), we
obtain the following proposition.

Proposition 1.6. A strict tensor C*-functor F: Rep(SU,(2)) — Ejz] is completely determined
by the values of Fu and Rr = F(R,). These data can be any pair (#,R) such that F is an
object in Ejz] and R = @, Y., Row 15 a family of maps

Row: C— A ® Hipy

satisfying
1. (R, ®id)(id ® Ruw) = —sgn(q)id on I, and
2. 2w RiwRow = [2]g, for all v.

Two q-fundamental solutions (€, R) and (4,S) respectively in EJ;] and 8}" give isomorphic
Rep(SU,(2))-module categories if and only if there exists a bijection ¢: J' — J and unitaries
vai g¢(v)¢(w) - vw such that va = (va &® Uwv)qu(v)qb(w)-

Remark 1.7. The module category associated with such an F is connected if and only if the
grading on .7 can not be decomposed into two separate blocks.

The above conditions on the R, imply that /%, and 77, have the same dimension for any
pair (v, w). We can also represent these R, as anti-linear maps Jy,: 0w — oy defined by

(16) jvwg = (5* ® ld)(RUw(1>>7

where £*(n) = (&, m)-

Proposition 1.8 (Cf. [8], Lemma A.3.2). The operators (JTpw)vw Satisfy TuwuTww = —sgn(q)id
and, for any fived v, Y. Tr(T},Tww) = [2],-
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Proof. Let us first check JyuJpw = —sgn(q)id. When & € 7, unwinding the definition, we
have

TwoTwwé = Twu((§* ®1d)Ryw(1)) = (R, ®@id) (€ @ Ruu(1)).
Using the first equality in (L3)), the right hand side is equal to — sgn(q)¢.

We next verify the condition on the traces. Choose orthonormal bases (£*); of the Hilbert
spaces #,,,. Then

DI RE R = 2, 2 (€ ©1d)R) (6" @ id)Ron)
= Z Z<x7vw ;)w’ jvwgz)w>
= ZTr(j;;ujvw)-

By the second relation in Proposition [[L6] we have Y Tr(7.} Jow) = [2],- O

Conversely, if a collection of anti-linear operators J,,: . — #,, satisfies the conditions
of the proposition above, the family (Ryw)ww defined by (L8]) gives a ¢-fundamental solution.
Two such collections (5, Jww) and (%, Zyw) are then equivalent if and only if there exists a
bijection ¢: J" — J and unitaries Uy : Dpw)pw) — How such that Tow = UpwZew),ew)Usy -

2 Classification of SU,(2)-homogeneous spaces by graphs

We use the results from the previous section to classify the quantum homogeneous spaces of
SU,(2) in terms of weighted graphs.

Notation 2.1. Let J be a countable set, and ¢ € R with 0 < [g| < 1. We let 7./ denote the
collection of g-fundamental solutions (7, R) in &/.

Notation 2.2. Let (7, R) € 7;] , and let [J,, be the associated anti-linear operators as in
(TH). We let (ALY, denote the eigenvalues of J*,Jpw, counted with multiplicity.

We define W (72, R) as the oriented graph with cost which has the vertex set .J, and dim(.7,,,)
arrows from v to w with costs (A",

In the following proposition, we provide a fundamental domain for the equivalence classes of
g-fundamental solutions in & (cf. the discussion after Theorem 5.5 of []).

Proposition 2.3. Let J and J' be countable sets. When (A, R) € T, and (4,8) € T,”, the
associated weighted graphs W (7, R) and W(¥4,S) are isomorphic if and only if the induced
tensor functors from Rep(SU4(2)) into £/ and E]" are tensor equivalent.

Moreover, any W (7€, R) is a fair and balanced [2],-graph, and all fair and balanced [2],-graphs
arise in this way.
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Proof. First we remark that, by Proposition [[.6] equivalence of tensor functors can be replaced
by equivalence of g-fundamental solutions.

Let now (4,R) be a g-fundamental solution with associated anti-linear maps J,,. First,
the sum of weights on edges starting from a vertex v is given by >, Tr(7.,Juw). Thus,
Proposition [[.§ implies that W (¢, R) has the constant source weight [2],.

Let us show that the cost is balanced. If there are no edges from v to w, this means 7, = 0.
Since JpwTwe = —sgn(q)id, it follows that also J,, = 0, and so there are no edges from w
to v. Assume now that J,, # 0. We consider the left polar decomposition Jy = JywPow, SO
that J,, is an isometric anti-linear map and P,,, is a positive linear map. From the condition
TowTws = —sgn(q), we know that J,, is an anti-unitary, that P,, is invertible and that
P Y (—sgn(q)J¥,) is the right polar decomposition of 7. By the uniqueness of the (left) polar
decomposition, we obtain J,, = —sgn(q)J¥, and P,, = Ju,P, J%,. It follows that, with
preservation of multiplicities, we have

Spec( T Juw) = (Spec(T,Jun)) ™

This shows that W (7#,R) has an involution such that the cost becomes balanced. Thus,
W (A, R) is a fair and balanced [2],-graph. Moreover, because J2 = — sgn(q), the multiplicity
of 1in J; Jw is even in case ¢ > 0 and the involution can be made fixed point free. We conclude
that W (.2, R) is a fair and balanced [2],-graph.

Now, two ¢g-fundamental solutions (#, R) and (¢, S) with associated anti-linear maps 7, and
T, are equivalent if and only if there exists a bijection ¢: J' — J and unitaries Uy : (o) p(w) —
H such that T = UpwZew)ew)Uny- Hence we see that W (77, R) does not depend on the
equivalence class of (#, R), since this simply corresponds to relabeling of the vertices.

Conversely, let (I', W) be a fair and balanced [2],-graph, with a labeling of its vertices by J.
Choose an involution on the edge set as in the balancedness condition, fixed point free in case
g > 0. Choose an arbitrary function p: '™ — {—1,1} such that p(e)p(€) = —sgn(q) for all
edges e. Such a function exists by the stated assumption in the ¢ > 0 case. Let 7%, be the
vector space spanned by the edges in I'D having source v and range w, and make it into a
Hilbert space by making these edges an orthonormal basis. Finally, let .77 be the Hilbert space
direct sum of the J7,,, with the obvious J x J-grading. Note that by balancedness and fairness,
the number of edges coming out of or going into any given vertex is uniformly bounded, so that
@D, . How is an element of £ }] .

Define then 7,.,: 7¢,, — ¢,, as the unique anti-linear operator taking the standard basis
vector e to p(e)W (e)'/?e. It is clear, by construction, that these operators satisfy the equations
in Proposition [[L8. Hence they give a g-fundamental solution in £ J;] )

It is left to show that these two maps are inverses of each other. The only difficulty may consist
in showing that an arbitrary solution (7, R) is isomorphic to the solution constructed from
W (s, R) as in the previous paragraph. However, choosing bases in the .7, which diagonalise
the J* Juw, we get immediately a choice for the function p. It is then easy to construct the
desired isomorphism. O
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Theorem 2.4. For 0 < |g| < 1, the quantum homogeneous spaces over SU,(2) are classified,
up to equivariant Morita equivalence, by connected fair and balanced q + q~-graphs.

Proof. The theorem follows by combining Proposition 23] with [8, Theorem 6.4]. Since the
powers of u generate Rep(SU,(2)), the graph W (.7, R) is connected if and only if the associated
module category is connected, in which case the index set must necessarily be countable. [

3 Connected fair and balanced graphs

In the following, each a priori unoriented graph will be interpreted as a symmetric graph in the
obvious way.

3.1 Examples of fair and balanced graphs from Frobenius—Perron
theory

Proposition 3.1 (c.f. Theorem 3.5 of [9]). Let I' be a connected symmetric graph. Then I’
admits a fair and balanced T-cost for some T < 0 if and only if it has finite degree, i.e. the
number of edges emanating from a vertex is uniformly bounded. It admits a fair and balanced
T-cost for some T' > 0 if in addition the number of loops at each vertez is even.

Proof. As already remarked in the Introduction and the proof of Proposition 2.3] the existence
of a fair and balanced T-cost necessarily implies that the degree of the graph is finite.

Conversely, if I" has finite degree, the norm |I'|| of the adjacency matrix A(I") of I' is finite. From
classical Frobenius—Perron theory (for finite graphs) and [22] (for infinite graphs), it follows that
we can find a formal eigenvector ¢ of A(T") at eigenvalue |T'||, such that ¢, > 0 for all vertices
v. If then e is any edge from v to w, associate with it the cost ¢, /c, > 0. It is clear that this
cost is balanced. Moreover, the eigenvector property implies that it gives a fair and balanced
T-cost for T'= —|TI'||. Of course, this is a fair and balanced ||I'|-graph if the loops at vertices
are even in number. O

Remark 3.2. 1. When [ is infinite, the same result of [22] gives that we have fair and
balanced T-costs for any T with |T'| > |T'].

2. When T' is a tree, any fair and balanced cost on I' must arise from a Frobenius—Perron
eigenvector. Indeed, choosing a root for the tree, one can assign to any vertex the product
of the costs of the edges in the unique minimal path from the root to that vertex, which is
easily seen to give an eigenvector for the adjacency matrix with strictly positive entries. In
general, as in the Examples [3.14] below, other finite graphs might admit fair and balanced
costs which are not induced by Frobenius—Perron vectors. See also the discussion in
Theorem 3.5 of [9], whose techniques are also applicable in the positive setting.



De Commer and Yamashita, Quantum homogeneous spaces for quantum SU(2) 10

Corollary 3.3. Any connected symmetric graph I' of bounded degree and norm ||I'|| = 2 arises
as the graph of an ergodic action of SU,(2), for at least one value of q.

The countable set of graphs with norm < 2 has to be excluded of course, since it correspond
to the root of unity case T = g + ¢~* with ¢ € {e= | n > 3}, for which the operator algebraic
SU,(2) is not defined. Cf. [16].

Remark 3.4. The case of finite trees shows that there exist ‘isolated’ examples of quantum
homogeneous spaces for SU,(2) which only appear at one particular value of |¢|, c.f. the super-
rigid graphs in [9]. The matrices associated with these graphs tend to have non-integer norms,
and hence the corresponding quantum homogeneous space algebras cannot be embedded equiv-
ariantly into full quantum multiplicity ones by [8, Proposition 7.5]. Cf. Corollary 4.2 of [20] for
a related result.

Definition 3.5. Let I be an oriented graph, and let n be a positive integer. We let I'™ denote
the graph which has the same vertices as I', and the paths of length n in I' as its edges.

Proposition 3.6. Let T be a nonzero real number, and let I be a connected symmetric graph
endowed with a fair and balanced T-cost W. Then, for any positive integer n, the graph I'™
admits a fair and balanced ((—1)""1T™)-cost.

Proof. When (eq,es, ..., e,) is an n-tuple of composable edges in I', we define the weight of the
corresponding edge in I'™ to be [T;—, W(e;). This way, '™ admits the constant source weight
|T|". We can also define an involution on I'™ by sending (e1,...,e,) to (€, ..., &), and make
it a fair and balanced (— |T'|")-cost. If the originally chosen involution e — € was free and n is
odd, the involution (e,,...,é&;) differs from (ey, ..., e,) at least in the middle, so that we have
in fact a (—(=1)")-cost. O

We note that, when n is even, connectedness of I' does not imply connectedness of '™,

Remark 3.7. We give an interpretation of the above proposition in terms of the tensor C*-
functors between the categories Rep(SU,(2)) for different values of ¢q. Namely, using (L5)
successively, one sees that the morphism

Ron = (dy@n1 ® Ry ®idy@n-1)(id,@n-2 ® Ry @id,@n-2) - - - Ry € Mor(ug, u®" ®u®")

u

satisfies
( Z@n ®1du®”)(1du®” ® Ru®”) = <_ Sgn<q))nidu®"7 Z@nRuCD” = [[2]]2

Thus, for ¢’ satisfying sgnq’ = (—sgn(q))" and [2], = [2]7, we get a ¢-fundamental solution
(u“®n, R, ®») in Rep(SU,(2)). This defines a tensor C*-functor Rep(SU,(2)) — Rep(SU,(2)),
and any semi-simple module C*-category over Rep(SU,(2)) can be considered as one over

Rep(SU4(2)). The correspondence of fair and balanced graphs is as described in Proposi-
tion (3.6l
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Proposition 3.8. Let I' = (V, E,s,t) be a connected graph. If there is a fair and balanced
T-cost W on I', then one has |I'| < |T'|. When the equality holds, the function W is constant
on the set E,,, = {e€ E | s(e) =v,t(e) = w} for any (v,w)eV x V.

Proof. Suppose that there is a fair and balanced T-cost on I". Consider an operator B from

2V to (?E defined by
Bv)= Y /W(e)e.

e: s(e)=v

Then, the condition >} . . _, W(e) = [T'| implies that B*B = |T'[id, so | B| = 4/|T'|. Further-
more, consider the unitary operator U on ¢*E defined by Ue = &. Then, W (e)W (&) = 1 implies
that B*UB is equal to the adjacency matrix A(I") of I'. Thus, we have

Il = 1AM < [B*[U]1B] = IT1.
Next, suppose that W(e) # W (f) for some edges satisfying (s(e),t(e)) = (s(f),t(f)). Then,

one may modify the above unitary U by setting Ue = f, Uf = e, and otherwise keeping the
same definition. Since
+ > 2

VW W(f) + VW ()vVW(e) = ) ol

the matrix B*U B admits an entry strictly larger than that of A(I") at the (s(e),t(e))-th place,
and the same ones elsewhere. Thus we have |B*UB| > |A(')| and |T'| > ||T'|. O

:
:
=

Corollary 3.9. Let T" be a symmetric graph. Then, any fair and balanced (— ||T'|)-cost on T
comes from a Frobenius—Perron eigenvector at eigenvalue ||| as in the proof of Proposition (3.

Proof. Suppose that we are given a fair and balanced (— |[I'||)-cost on I'. By Proposition B.6]
we obtain a fair and balanced (— |I'|")-cost on I'™ for any n. Since I'™ has the norm ||I']",
Proposition [3.8 implies that the paths of same length, source, and target have the same cost.
Thus, the argument of Remark B.21(2) also works for I, and we can reconstruct a Frobenius—
Perron eigenvector (c,), of I' such that W(e) = c¢y()/cs(e)- O

3.2 Fair and balanced t-graphs from finite index subfactors

A fair and balanced cost structure can also be constructed on the principal graph of a subfactor.
In this section we freely use constructions from subfactor theory, see for example [12] and [10]
for details.

Let N © M be a I -subfactor of finite index. Associated to this inclusion are the C*-categories
N-mod-N of N-N-bimodules and M-mod-N of M-N-bimodules, generated by the object N €
~ Ny under the pair of adjoint functors

uMy ® —: N-mod-N — M-mod-N, My ® —: M-mod-N — N-mod-N,
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where the ® denote the appropriate Connes fusion products.

Let X denote the direct sum C*-category generated by a copy of N-mod-N and a copy of
M-mod-N, so that in particular Mor(X,Y) = 0 wherever X € N-mod-N and Y € M-mod-N.
We can define an endofunctor F' of X by taking ,,M, ® — on N-mod-N and yM,; ® — on
M-mod-N. Then F? is given by y My ® — on N-mod-N, and ,, My ® — on M-mod-N. The
latter can be written as ,,;(M;),, ® —, with N < M < M, the basic construction, since we have
a natural M-M-bimodule isomorphism

(3.1) My @ yM — My, a®bw— [M: N|"?aenb

which is compatible with the right M-valued inner products (a ® b,a’ ® ') = b* Ex(a*a’)b’ on
My ® yM and {z,y) = Ep(x*y) on M.

The natural embeddings N — M and M — M, induce a natural transformation R from idy
to F?, and in particular F may be identified with a self-adjoint object of &/, where J is a
parametrization of the irreducible objects in X.

Proposition 3.10. The transformation Ry satisfies
R:Ry = id, (R ®id)(id ® Ro) = [M : N]~Yd.

Proof. By construction, Rj is induced by the conditional expectations Ey: M — N and
Ey: My — M. This implies the first equality.

Next, let us compute the effect of the operation (R ® id)(id ® Ry). If X is an N-N bimodule,
this is given by a ® v — Ey(a® 1) ® x for a € M,z € X, where we identify a ® 1 with
an element of M; as in (31 and apply Ey. Using Ey(eny) = [M : N]7!, we can compute
Ey(a®1) =[M : N]7Y2a. If X is an M-N bimodule, Ry can be also written as

T — [M:N]_1/2ij®m;‘®z

J

using a Pimsner-Popa basis (m;); of M over N, in the notation of [I7]. Then, the effect of
(R*®1d)(id ® R) can be expressed as

[M: N7V Y En(mj)m! @z = [M: NI 1@

J

This completes the proof. O

It follows that (F,[M : N]Y4Ry) is a g-fundamental solution in End(X) for the ¢ satisfying
[2], = —[M : N]2. If we change the embedding M — M, to x — —x in the definition of Ry,
we obtain a g-fundamental solution with [2], = [M : N]/2. By construction, the corresponding
graph is the principal graph of N < M. The ‘2-step construction’ of Proposition on the
even vertices gives a (1 + ¢?)-fundamental solution of Pinzari-Roberts [20].
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Remark 3.11. Suppose that the inclusion N < M is of finite depth, so that the associated prin-
cipal graph is a finite graph of norm [M : N]2. Corollary implies that the ¢g-fundamental
solution (F, R) constructed from this inclusion is isomorphic to the one given in the existential
part of Proposition Bl (this can also be verified by the explicit computation of the Frobe-
nius reciprocity, see [10, Theorem 9.71]), and hence does not retain anything from the original
subfactor except for its principal graph. In the infinite depth case, there is room for more
structure. For example, for any irreducible unitary representation v of some compact quantum
group, there is a subfactor of index dim,(u) whose principal graph is the decomposition graph
of Lu,u®u,u®@u®@u,... [2, 26]. If u is the fundamental representation of SU,(2) itself, we
recover the graph A,, with the fair and balanced [2],-cost.

3.3 Explicit examples

Example 3.12. Consider the graph A o (Figure[), i.e. the Cayley graph of (Z,{—1,1}). For
lg| = 1, this graph obviously has a unique structure of a fair and balanced 2-graph, every edge
having weight 1. When 0 < |¢| < 1, take € R and define the edge weights W, , by

qx-‘rm-i-l + q—:c—m—l q:(:+m + q—x—m

qm+m+1 _i_qfxfmfl )

Wyz(m—>m+1) = , Wea(m+1—->m)=

qurm + qufm

and put W, o(m —> m+1) = ¢! and W, (m +1 — m) = ¢q. Then the (Ay o, W) are all
fair and balanced [2],-graphs based on Ay, .

To see this, choose a fair and balanced [2],-cost, and put a = W(0 — 1) > 0. Then we have
(3.2) a < [2]q; a ' < [2],

Let us write W (1 — 2) = b and W(—1 — 0) = ¢. By the constant source weight condition,
b+a ' =[2], and ¢ + a = [2],. Since (B:2)) also holds for b and ¢, we find

a < 131, a ! < @.
[2],° [2],

By induction, we deduce that

[~ + 1], o _ [n+1],
STl O

and hence, taking a limit n — oo, that ¢ < a < ¢~'. But each such a can be written as
x+1 —z—1 . . . .
% for a unique z € R U {£0oo}. Since the W(m — m + 1) are obviously determined by

the value of a, and since the weights W, , as above are easily seen to give a fair and balanced

[2],-graph, our claim is shown.

Since the flip m — —m exchanges parameters z and —z, and since the translation m — m + 1
exchanges parameters z and x F 1, we may restrict to the case of 0 < x < 1. In this range, the
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weighted graphs are mutually non-isomorphic and exhaust all the possibilities of such weighted
graphs. The vertices m € Z of (A 0, W,..) correspond to the family of Podle$ spheres S?

ge(z+m)
for SU,(2) for a particular parametrization x — ¢(x), see Example [5.7]

Example 3.13. For any 0 < |¢| < 1, the graph D} (Figure[2) admits a unique structure of a
fair and balanced [2],-graph. The quantum homogeneous space corresponding to either of the
endpoints is the quantum real projective plane algebra C (RPqQ) ([13,[14]), see also Example

Example 3.14. Consider the graphs AV for1<n<w (Figure [3). Then one checks that the
only possible fair and balanced [2],-cost on it is obtained by giving the weight |¢| to (say) the
counter-clockwise edges. This corresponds to the subgroup 7,1 < U(1) < SU,(2).

Example 3.15. Consider the graph Eél) (Figure ). Then one can check that this graph has
a structure of a fair and balanced [2],-graph only when |¢g| = 1. The same goes for the graphs

Eél), Eél), and DY for 4 < n. These correspond to the finite subgroups of SU1;(2) which are
central extensions by Z, of A4, S4, As and the dihedral groups of order 2n.

Example 3.16. For ¢ = —1, we find a unique structure of compatible fair and balanced
(—2)-graph for each of the types A/, (2 < m < oo, Figure[dl), D!, (3 < m < oo, Figure [).

Example 3.17. For a generic negative ¢, the only new example is the graph A/  (Figure [7])
whose vertices are labeled by nonnegative integers. One may give a compatible fair and balanced
[2],-graph structure as follows. Notice that the weights on rightward edges are monotonically
increasing when —1 < ¢. This also gives a coideal, see Example and [24].

Example 3.18. Consider the graph e ——e . Then this does not admit the structure of a
fair and balanced [2],-graph for any ¢ with 0 < |¢| < 1. Similarly, when 0 < |g| < 1, the graphs
D,, for odd n, and the graphs A/ for 3 < m < oo, in the notation of [23, Appendix|, do not
admit fair and balanced [2]4-costs for 0 < |¢| < 1. Hence we obtain that there is no quantum
homogeneous space corresponding to these graphs, refining the result of Tomatsu stating the

non-existence of such algebras among the coideals of C'(SU q(2))

4 Classification of SU,(2)-homogeneous spaces for |¢| ~ 1

Using the results of the previous two sections, let us give now a direct combinatorial proof of
the classification of quantum homogeneous spaces for SU(2), as first obtained by Wassermann
in [28] by using ‘half’ of the categorical structure and more computational techniques. We shall
say that a grag)h is of extended ADE type if it is a point and a double loop, or one of AlY
for 1 = n, DY for 4 < n, EY for n = 6,7,8, Ay, Dk, or Ay, that is, one of the graphs
appearing in [28].

IThis (see also Example[6.5]) corrects the error in [23] Theorem 7.1], which claimed the existence of a coideal
of type D7 and the nonexistence of the types A’ for any negative ¢ due to a circular argument in its proof;
Tomatsu has notified us of a correct proof based on the ‘generators and relations’ approach [24]. Our result
agrees with his corrections.
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Proposition 4.1. Up to equivariant Morita equivalence, the quantum homogeneous spaces over
SU(2) are all of the form H\SU(2) for some closed subgroup H of SU(2).

Proof. We first claim that the associated graph must be of the extended ADE type (cf. [28]
Theorem 1]). Indeed, by Proposition B8] the possible graphs must have norm at most 2.
Moreover, the ones with norm smaller than 2 are trees, hence cannot happen by Remark [3.212.
Since the involution has to be fixed point free, we obtain that the graph is of extended ADE

type.

Now, Corollary implies that the fair and balanced cost is uniquely determined by the graph
structure. Hence the only classification parameter is the graph alone. As is well known, all
these graphs are realized by closed subgroups of SU(2). O

We obtain an analogous classification for the case of ¢ = —1 by the same strategy as above.

Proposition 4.2. The quantum homogeneous spaces over SU_1(2) are all strongly Morita
equivalent to a coideal of C(SU_1(2)).

Proof. The proof is completely analogous to that of the previous proposition. This time, there

is no condition on the involution, hence the graphs of types A/ (m = 2,3,...,0) and D/,
(m = 3,4,...) are also allowed. Again, any of these graphs are known to correspond to a
coideal (see [23], 24] or Section [l of this paper). O

Further expanding on this approach, we can go a little further and also list explicitly the
quantum homogeneous spaces over SU,(2) when |g| is very close to 1.

Theorem 4.3. There exists a real number 0 < gy < 1 such that for any qo < q < 1, all quantum
homogeneous spaces over SU,(2) arise as coideals, and are thus isomorphic to either a single
point, the quantum real projective plane Rqu, one of the Podles spheres, or Z,\SU ,(2) for some
ne N>0.

For the same constant qq, for any —1 < q < —qq, again all quantum homogeneous spaces over
SU,(2) arise as coideals. Other than the ones listed above, we have the possibility of type Al .

Proof. 1t is well known that there is a spectral gap between 2 and the next number ¢, which
can arise as the norm of an adjacency matrix ([I2, Theorem 1.1.2.], the case of infinite graphs
being easily incorporated as unions of finite graphs). Then, with gy = /2, one has [2], < to
whenever ¢y < |q| < 1. By Proposition B.8 any graph associated with an ergodic action of
SU,(2) for such ¢ must have the graph norm 2, i.e. must be of extended ADE type. Given any
fair and balanced [2],-cost on such a graph, one can choose an appropriate vertex and solve
the equation for an equivariant homomorphism into C'(SU,(2)), which gives a realization as an
coideal. O
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5 Generators and relations

We continue to write u = u/, for the fundamental representation of SU4(2). The standard
basis of 5 is denoted by (e, €2). Let (I', W) be a connected fair and balanced ¢+ ¢~ *-graph,
with associated g-fundamental solution (7, R) in & where J = T'®). Let F be the associated
strict tensor functor from Rep(SU,(2)) into £7. Let D’ be a Rep(SU,4(2))-module C*-category
associated with F, which we may also assume to be strict. We may use J to label a maximal
set {z, | v € J} of mutually non-isomorphic irreducible objects in D. We recall that we can
then identify F(ug)pw with Mor(z,, u, ® z,,) for a € %N, the latter having the natural Hilbert

space structure {f, g) = f*g.

In [8 Section 5], we associated with each v, w a certain vector space
Ay = Beln Mor (g ® T, Ty) ® H,.

These o) could be seen as pre-Hilbert C*-equivalence bimodules between *-algebras <7 and
o/, equipped with compatible coactions. We recall that the completion of some o7} is precisely
the ergodic action of SU,(2) associated with the vertex v. In general it is difficult to give a
concise description by generators and relations of an individual algebra .7 in terms of its
associated graph (but see [20] for at least a description). However, the ‘linking *-algebra’
o = @, ," has a much nicer presentation. Since 7 is Morita equivalent to any of the algebras
</, (by means of the &7,,-47-equivalence bimodule ®,,.4,, ), it has the same *-representation
theory as any of the <7, and shares many properties with them, such as the type of associated
von Neumann algebras.

We fix an orthonormal basis of each (non-zero) 7, = F(u)y, = Mor(x,,u® z,,) once and for
all, and denote their disjoint union over all v,w as (f;)r for some index set L. In order to
specify which component f; is in, we define maps s and ¢ from L to J by (s(i), (7)) = (v, w) if
fi € fvw'

Definition 5.1. For i € L and j € {1, 2} with (s(7),%(i)) = (v, w), we denote by z;; the element
zij = 7 ®e; e Mor(u® xy, x,) ® 56, < o, < o .

The unit of o7}, considered as a projection in 7, is denoted by d,.

The coaction of P(SU,(2)) on the various .27} as in [8, Definition 5.2] combine to a global
coaction a of P(SU,(2)) on <7, by [8, Proposition 5.8 and Lemma 5.13]. The formula for the
coaction on the generators z;; can be immediately deduced from the definition of this coaction.

Lemma 5.2. The coaction o: o/ — of QP(SU,(2)) is determined by the formulas

2
04(51,) = (Sv ® 1, Oé(Zij) = Z Zik ®ukj.

k=1
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We next deduce certain relations among the elements d, and z;;. First, the following equalities
are obvious by construction.

(51) 5vzij5w = 5v,s(i)5w,t(i)zij-
Lemma 5.3. For any w € J, one has the following relation inside < :
(5.2) Z 25 Zik = 0j k0w

€L, t(i)=w

Note that the sum on the left hand side is finite, as 7, is non-zero for only a finite number
of v when w is fixed.

Proof. By definition of the *-operation [8, Definition 5.10], we have that zj; has only non-zero
component at a = 1/2, where it equals the element [(RZ@idt(i))(idu®fi)]®(e*®id )(R.(1)). By
definition of the multiplication [8, Definition 5.4], we have then that >}, ,, _,, 2;2i; corresponds
to the element

Y, [(Rr®idy)(ide ® £if) (€] ®idy) Ru(1) ® )" ®idy)] © (€] @ idu) Ru(1)) @ €))e
3,6(1)=w
(see also the proof of [8, Theorem 5.16]). But since the f; are orthonormal, Zi7t(i):w fifi is
equal to id € End(u ® z,,). Then, by looking at the morphism part, we see that the remaining

expression only has a non-zero component at ¢ = 0. Thus the above can be simplified to
id, ® (ef ® R*)(R(1) ® ex) = id,, ® {ej, ex), proving the assertion. O

Lemma 5.4. For any i,k € L, one has

(5.3) zinzpy + Zi2zgy = Oik0s(i)

Proof. Applying the coaction to the above formula, the umtarlty of w implies that the left hand
side represents an invariant element. Since it lies in % , it must be a scalar multiple of id;

Applying Eg to it (cf [8, Lemma 5.15]) and using the conjugate equations, we obtain that this
scalar must be > dlm <R (1), e; ® ((ef ®idy) Ry(1)))f;* fr, which by the orthogonality of the
fi reduces to 0; . O

The final relation expresses the adjoints z; as a linear combination of elements of the form
2k It is here that the weight W on the graph will be used. Recall from (L) the anti-
linear maps J,., associated with our ¢-fundamental solution (7, R). Consider the matrix

EY) = —sgn(q){Twwfj, f;), where s(j) = t(i) = v and t(j) = s(i) = w. Then the identity

)
TowTwe = —sgn(q) can be written as

> BRUESY = —sen(q)d.
kel
(s(k),t(k))=(v,w)

Recall also the matrix F' introduced after Definition [T.1]
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Lemma 5.5. For any i€ L and j € {1,2} with (s(i),t(i)) = (v,w), we have

(5.4) z = Z EZ-(;U’U)(FUZM + Foj2p2),
kel
(s(k)t(k))=(w,v)

or more succinctly
Z(v,w) — E(wﬂ})z(wvv)F

Y

where 2% is the matriz of z; with (s(i),t(i)) = (v, w).

19

Proof. As in the proof of Lemma (.3 we have that 2 has only a non-zero component at

a = 1/2, where it equals the element [( R} ®id,)(id,® f;)]®(ef ®id,) (R, (1)). Now (R, ®id,) €
Mor (z,, UQ®u®z1,, ), and the latter space can be identified with F(u®u)ww = BuF (1) we@F (1),
by strict tensoriality of F. Under this correspondence, the element (R, ® id,) coincides, by

construction, with the element ®,R,,(1). But the latter can be written

@vav(l) = 2<.fl> jwvfk>.fk ® fl~

v,k,l

Identifying again with Mor(z,,u ® u ® z,,), we obtain the equality

Ru ® ldw = Z<f17 juwfk><1du ® fl)fk

v,k,l

Plugging this into the expression for z above, and using orthogonality of the f;, we obtain

v

k

Since —sgn(q) (e ®idy)Ry(1) = Fyijer + Fyjeo, this is precisely the formula for 2} as stated in

the lemma.

O

We now aim to show that these relations are the universal ones by which one can define 7.
We write C.(.J) for the algebra of finitely supported functions on J, and we denote 6, € Ce.(J)

for the Dirac function at v € J. We identify C.(J) with its copy inside 7.

Theorem 5.6. Let A be the (not necessarily unital) *-algebra generated by a copy C.(J) and

elements Z;; for i€ L, j € {1,2} satisfying the relations ([&1)), (5.2), (B3), and [B4) in place

of zij. Then the natural *-homomorphism

51} = 51}7

Zij = Zij,

m A— o {

1 an isomorphism.
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Proof. Let us first prove surjectivity of . That is, we want to show that the z;; generate o7. If
this is not the case, there would be a nonzero morphism f € Mor(u, ® z,, x,,), for some a € %N
and v, w € J, which is orthogonal to the morphisms in Mor(u®* ® x,, z,,) for any k € N. Since
any u, is contained in some u®*, this is impossible.

To prove now the bijectivity of m, we construct an explicit formula for its inverse. To obtain it,
we modify a technique which is very useful in the manipulation of Galois objects (cf. [4], see
also the more direct proof in [5]).

We first remark that there exists a coaction of P(SU,(2)) on A, which we will also denote as
a, uniquely determined by the formula

2
a(Z;;) = 2 Zik, @ Ug;
k=1
That « is well-defined follows from the form of this formula (for (5.I])) and the fact that (u;;);
is unitary (for (5.2)) and (5.3)). Moreover by (5.4)), « is a *-homomorphism. From the form of a,
it also satisfies the coaction property, and hence defines a coaction of P(SU,(2)). Note that 7 is
then an equivariant map. In the following, we will use the shorthand notation a(z) = @) @)

both for x € & and z € A.

Denote now by B the (not necessarily unital) *-algebra generated by a copy of C.(J) and
elements Yj; for i € {1,2} and j € L, subject to 0,Y;;0s = 6s(i)v01(:),Ys; and the relations

2
Z VY = 6y, Z YiY = 6100, Yow) = prly@o)(glew)-1
j=1 jeL
1(7)=w

which are simply the relations defining the opposite algebra of A.
By the defining relations for P(SU,(2)), the formula
B: P(SU,2) = [T D (Bw ® Awu), iy = (Y Y ® Zis)

weJ veJ keL
t(k)=w

w

defines a unital *-~homomorphism, where we put B,, = §,86,, and where the codomain is
considered inside a completed tensor product of the algebras B and A, or alternatively as left
multiplication operators on B&.A. Let us write the components of f(x) as 5()pw € Buw ® Apw-
We will employ the shorthand notation 8(2)ww = 2[1,0w] ® T[2,00]-

As a final ingredient, define an anti-isomorphism

51} '_’51)7

Ju

S:B— A, {

which is well-defined by the symmetry of our relations. Then S restricts to maps Sy, : By —

Ao -



De Commer and Yamashita, Quantum homogeneous spaces for quantum SU(2) 21

Write Eg for the map &/ — C.(J) sending z to (id ® yg)a(z). Define then

(bvw: Ay — Aku xr — E(G(x((])ﬂ-(svw(x(l)[lvw])))x(l)[2vw]-
We claim that ¢ = @, Py is an inverse for .

To see this, pick y € Ayy. Then ¢y (7(y)) = Ee(T(¥0)Svw (Y1)[10w])))Ya)[20w] DY equivariance
of m. We argue that in fact

(55> Y(o) Sow (y(l)[lvw]> X Y)[2vw] = 0y ® Y.

Indeed, using the multiplicativity of a and § and the anti-multiplicativity of S, we have that
equation (5.5) holds for a product if it holds for the separate factors. Hence (5.5]) only has to
be verified on the generators Z;;, Z; and d;, which follows from an easy computation using the
defining relations. It follows that ¢(7(y)) = y, and that ¢ is the inverse of .

O

Example 5.7. Consider the weighted graph (Ay o, W) as in Example 3.12] In this case, the
(m,m=1)

generators z can be labeled as z
only arising if |m —n| = 1.

From (5.4), we get that

(5.6) z§10)2§10)* n Zélo)zélo)* _ 1= z§01)z§01)* i 2501)2501)*.

, since 7%, is zero or one-dimensional, the latter case

Now we may choose B9 =W, (1 — 0)%2 (and then E®Y = —sgn(q)W, (1 — 0)~Y/2), so by
Lemma [5.5] we know

6.1) ‘F@”=—%mwm*mmar~mmém,

A7 = (g AW, (1 — )21

Hence, abbreviating z = 2\'* and W,.(1 — 0) = W,, we can use (5.1) to rewrite (5.6) as

(5.8) {zlzf + 2925 = 1

lgl2i 21 + g 25 = WL
Let us write

X = (lg|™ + q[*)z3 =1,

Z = (= + |l (ot — ),

Y = (lgI™ + lqI") 21 2.
Then some easy but slightly tedious computations using only (B.8) show that the X, Y, Z
satisfy the relations of the Podle§ sphere S2, . with c(z) = (|g[**' — |g[~""")7?, with the
parametrization as in [21], namely X* =Y, Z* = Z, XZ = ¢°ZX,YZ = ¢ 2ZY, and

VX =(1—|gl"22)1+q]"2)
XY = (1— g™ 2)(1 + |q]*"22).
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Another calculation shows that this gives an equivariant map from P(Sgc(w)) to o/},

Now, since P(Sgc(w)) has a faithful positive invariant state, and since the action on it is ergodic,

the map from P<S§c(x)) into .27} is injective. But since the multiplicity graph of &7} is the same

as the one of P(Sgc(w)), they must have the same spectral decomposition. It follows that the

above map must actually be an isomorphism.

6 Equivariant morphisms

The result of [8, Section 7] can be specialized to the SU,(2) case in a form only involving the
g-fundamental solutions. We continue to abbreviate u = wu;/,. If X'is a quantum homogeneous
space for SU,(2), we write Dx for the Rep(SU,(2))-module C*-category of finite equivariant
Hilbert C*-modules, and we write the module explicitly by M as in [§, Definition 2.14] for
emphasis. We denote by & the tensor C*-category of endofunctors of X, and R* for the
associated ¢g-fundamental solution.

Let now X and Y be quantum homogeneous spaces over SU,(2). If there is an SU,(2)-morphism
from Y to X represented by an equivariant homomorphism f: C(X) — C(Y), the induced
Rep(SU,4(2))-homomorphism (64, ) from Dx to Dy must make the diagram

M(RY,042)

Oux U@u Oy
6#(M(Rx,m>>l %
Oup(u®@u )

commutative for arbitrary object x € Dx. Let J (resp. J') be an index set of irreducible classes
in Dx (resp. in Dy), and F;, = Mor(Y;, FI(X,.)) for (t,7) € J' x J be the vector spaces associated
with 64. In terms of the vector spaces (Fi,)restes, (F)rses, and (FY);.es, the above means
that the unitary maps

wu,t,s: @FtT’@FEi_)@Fg;@FqS

reJ qeJ’

for s € I make the diagram

(6.1) F, — R

®.F, @ FX @ F%
R@idl lid@d;ow@)id

®UF2(L®F3;®FU’Q@U,SF;X®F§S®F5r

commutative.

The next proposition shows that any Rep(SU,(2))-homomorphism functor can be characterized
by this commutativity.
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Theorem 6.1. Let G be a *-preserving functor from Dx to Dy represented by the J' x J-graded
vector space (Fy)teres. Suppose that there exists a unitary map

(62) wt,r: @Es@Fs}f«_’@Fﬁé@Fur

sed ueJ’

for each t and r, such that the diagram (6.1)) is commutative for any t and r. Then v can be
extended so that (G, 1) becomes an Rep(SU ,(2))-homomorphism.

Proof. The assertion implies that there is a natural equivalence ¢: M (u,G—) — GM (u, —) of
functors from Dx to Dy such that the diagram

G(Rx)

(6.3) Gz GM(u®u,x)
Res G(Pu,u,z)
M(u® u,Gx) — M(u, M (u, Gz)) o GM (u, M (u,x))

1S commutative.

We first define the isomorphisms
Yyor o2 M (U, Gr) - GM (u®, z)
for k € N and x € Dx by

wu®k,x:G(¢_k)o¢oM(¢>M(u> 7$))OOM(U’M(U >¢))O¢k

Next, the assumption on (G, 1)) implies that any morphism f: u®* — u®**2 in Rep(SU,(2))
of the form R;;, satisfies fi,er, = Yyer+2, f for arbitrary x. Applying the *-operation to
the diagram (6.3]) and using the fact that ¢ is unitary, we obtain the same statement for the
morphisms R ;. Since the morphisms of the form R;;,; and R}, for j € N generate the

full subcategory of Rep(SU,(2)) with the objects (u®*)yey, we conclude that fi,er , = wu@“'w f
for arbitrary f e Mor(u®*, u®') and z € Dx.

Now a standard argument shows that ¢ can be extended to Rep(SU,(2)). O

By virtue of the above theorem, we can reduce the problem of finding equivariant morphisms
between quantum homogeneous spaces to solving a series of quadratic equations on the set
of unitaries. For example, this gives another way to classify the coideals of SU,(2) which is
easier and more conceptual than the ‘generators and relations’ method of Podles and Tomatsu.
In some parts of Tomatsu’s classification, various consideration about the (non)existence of
coideals with particular graphs needed to be combined each other to say whether a coideal of
a particular diagram exists or not. In our approach, in order to determine the existence of a
particular type of coideal, we only need to study edge weights and the quadratic equation on
unitaries for that particular graph.



De Commer and Yamashita, Quantum homogeneous spaces for quantum SU(2) 24

Example 6.2. Let 0 < |¢g| < 1. The embedding of a Podles sphere (Example B.12)) into
C(SU,(2)) can be explained as follows. First, if there is any such an embedding 6, the Hilbert
spaces (F,)mez associated with it have to be 1-dimensional by [8, Proposition 7.5]. Thus, we
need to find unitaries

¢m: (Fm+1 ® Hm+1,m) @ (mel ® Hmfl,m> - %/2 ® Fm

for m € Z satisfying the compatibility condition of Theorem [6.I. The g-fundamental solution
of the Podles sphere for the parameter x can be represented by

q:c+m+1 +q—(x+m+1) % qx+m—1 +q—(x+m—1) %

gm,erl ® £m+1,m + Sgﬂ(q) gm,mfl ® gmfl,m

qurm + qf(achm) qachm + qf(achm)

where &, ,41 are unit vectors in H,, y,+1. Fix a unit vector &, in F,,, for each m € Z. First, let
us consider the case 0 < ¢g. Comparing the above with the ¢g-fundamental solution of u in (I.4]),
we deduce that ¢ has to be of the form

D=

1
2

—(xz+m) r+m
m. = q q
V(Em+1 @ &mr1,m) = (1) " @ ini (A gztm 4 g—(@+m) €2 @ &m + gztm 4 g—(@tm) er® fm) )
+ 3 (wtm) |2
. - qx m 3 q T+m
V(Em1 ® gm—l,m> = (—1)"am@m—1 <_)\ getm 4 g—(@t+m) €2 @ &m + grtm 4 g~ (@+m) e ® fm)

(if x = o0, we take (—1)"ami1Aes ® &y, and (—1)"a@am 161 ® &, respectively) for some
unit modulus complex numbers (o, )mez and A. The case of ¢ < 0 is almost the same, given by

(SIS

1
2

—(xz+m) r+m
_ m q q
7vb<£m+1 & £m+1,m) = OmQm+1 ((_1> A qm+m + q*(erm) €2 ® gm + q:erm + q*(achm) @1 ® £m> ’
+ 3 (a+m) 3
~ q:c m 2 " q— r+m
¢(§m71 ® gmfl,m) = QmQm—1 <>\ q:erm + q*(achm) ez ® gm - (_1) qgchm + q*(achm) e1® gm) :

Taking into account of the gauge action (see [8, Corollary 7.4]), we see that there is an free
transitive action of U(1) on the embeddings of C(S7,) if 2 # oo (given by the right translation
of U(1)), and that the embedding is unique for x = co.

Example 6.3. We can see that category of the graph D, (Example BI3]) admits an (essen-
tially unique) R(SU,(2))-homomorphism functor to the one of A, ,, (Example B.12]) with the
parameter z if and only if x = 0. Then, the endpoints of D, are mapped to the vertex 0 of
Ay In fact, most of the unitaries to consider for (6.2]) are between 1-dimensional Hilbert
spaces. This excludes the cases 0 < x, and also forces the endpoints to be mapped to the vertex
0. For = 0, the condition forces 04 (X,,) ~ Y_,, @Y, for 1 < m, and O4(X,) = 0,(X;z) ~ Y.
Hence 04 is represented by the 1-dimensional spaces Fi, Fj, F,,,, F_,, for r =1,2,..., One can
verify that the unitary map from F, ® H,; @ F5 ® Hz to Hyy @ F1 @ Hy 1 ® F_; expressed by

the matrix
i 1 1
V2 \-1 1
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satisfies the condition of ¢. This solution corresponds to the embedding of C(RF; ) into
C(S30).

Example 6.4. Let ¢ < 0, and consider the graph of type A’  (Example BI7). By an analogous

1

argument as above, we see that the Podles sphere for # = 5 embeds into this one, by the

correspondence of vertices m — m for m > 0 and m — —(m + 1) for m < 0. A formula similar
to the ones of Example [6.2] gives the embedding of the algebras (C(X,,))r_, into C'(SU,(2)).

Example 6.5. Consider the case ¢ = —1 and X is either of the ones in Example We then
find solutions of (G, ) for the embeddings C'(X) — C(SU_1(2)) coinciding with the results
of [24]. As an illustration let us consider the graph Dj. It has three vertices we label by +, —, =,
where = is the middle one admitting a loop around it. Since the associated graded vector space
has 1-dimensional components, we pick a unit vector in each component denoted by &, € F,,
etc. Thus, the g-fundamental solution can be represented by the vectors

1 1
Ex @ Eax + Efw ® s + ﬁf*— R, V2 ®&uy, V2 . ®E& .

The vector spaces (Fy, I, F) associated with G: Dx — Rep(SU,(2)) has to satisfy dim F,, = 2
and dim F;, = dim F_ = 1. We take a basis ({1,&) of F, and unit vectors {4 € Fy. Solving

the equation for v, we find that the solutions are the following two families, both parametrized
by 5 € U(1). The first is

§1 Q& me1®&, L®&r—ea®fy, {{®&.— %(6251 + e1&),

@6~ 0B, 66~ —aBE, & O~ s(efi—ak)
§1® & — Bea®&, @& — Bel ® &1,
and the second is
§1 Q& —me1®&y, L®&yr—ea®ly, {H®&.— %(6251 + e1&),
LR~ —flea®l, HLEE&L —a®f, Q&,— %(_546151 + e26),
§1 @ s %((561 + Ber) ® &1 + (—Per + BPea) @ &),

§1 ® &use — %((ﬁgel — Bes) @& + (Ber + Bea) ® &).

7 The Cr-algebra of a quantum homogeneous spaces

It would be very pleasing if certain properties of the C'(X) could be deduced directly from their
associated fair and balanced [2],-graph. For example, can something be said about the type of
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their associated von Neumann algebras? About their center, or the center of their associated
von Neumann algebra? As we will see, there is a satisfying description of their K-theory in
such terms. For this, we will not need to make use of the cost function. We first however make
some comments on nuclearity and C*-algebraic types.

7.1 Cr-algebraic properties of quantum homogeneous spaces

Proposition 7.1. Let X be a quantum homogeneous space for SU,(2), where 0 < |q| < 1.
Then C(X) is nuclear.

Proof. This follows from [7, Corollary 23]. O

We now turn to a discussion of the type of the C*-algebras associated with ergodic actions by

SU,(2).

Recall that a unital C*-algebra is said to be liminal if all its irreducible representations are
finite-dimensional. The algebra C(SU(2)) is liminal since it is commutative, and C(SU_1(2))
is also known to be liminal; any of its irreducible representations is at most 2-dimensional [29)].

When |g| < 1, the C*-algebra C'(SU,(2)) is no longer liminal, but it still is of type I. The follow-
ing proposition concerns the type of the C*-algebra associated with a quantum homogeneous
space.

Proposition 7.2. Let X be a quantum homogeneous space for SU,(2), where 0 < |q| < 1.
Then C(X) is of type I if and only if C(X) is equivariantly Morita equivalent to a coideal.

Proof. Since the property of being type I passes to sub-C*-algebras by Glimm’s Theorem (cf.
[0, TV.1.5.11]), any coideal for SU,(2) is of type I. Since this property is also preserved under
strong Morita equivalence, the ‘if” direction of the assertion is proven.

Conversely, assume that A is of type I. Then A has at least one non-zero finite-dimensional
representation. By [23, Theorem 4.10], the graph associated with this ergodic action must have
norm smaller than or equal to 2, hence equal to 2. By the arguments as in Theorem [4.3] it
must be equivariantly Morita equivalent to a coideal. O

Remark 7.3. Quite possibly this proposition remains true also on the von Neumann algebraic
level. Of course one direction is trivial, but we have not been able to produce a proof for the
converse direction.

7.2 K-theory of quantum homogeneous spaces

Let us now consider the K-theory of quantum homogeneous spaces. The solution of the Baum-—
Connes conjecture by Nest and Voigt [15, 27] allows us to compute the (usual) K-groups of
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quantum homogeneous spaces from the equivariant K-groups. First, let us briefly review their
methodology. In the Z-equivariant KK-category, there is an exact triangle of the form

T—id

Co(Z) Co(Z)

N

C

where 7 is the automorphism of Cy(Z) given as the translation by 1 € Z. By the Baaj—Skandalis
duality and the Takesaki—Takai duality, we obtain an exact triangle

C X2 C - CcU)) - C[1]

in the U(1)-equivariant KK-category. The induction from U(1) to SU,(2) gives yet another
exact triangle involving the standard Podles sphere and SU,(2),

CUMNSUL(2)) = CUM\SU,(2)) = C(5U,4(2)) = CUM\SU,4(2)),

in the SU,(2)-equivariant KK-category. This triangle can be lifted to a D(SU,(2))-equivariant
exact triangle for the Drinfeld double D(SU,(2)). The solution of the Baum-Connes conjecture
for SU,(2) by Voigt states that C(U(1)\SU,(2)) is D(SU,(2))-equivariantly KK-equivalent to
C @ C, hence we obtain an exact triangle of the form

(7.1) COC —»COC — C(SU,L2)) — (CHT)[1].

Theorem 7.4. Let X be a quantum homogeneous space over SU,(2), and let vy be the action of
T € R(SU,(2)) on KfU‘I(z)(C'(X)). Let ¢ be the map on K(}SYU‘I(Q)(C'(X))GL)2 represented by the

matrix
—id —id
id o~y —id)
Then Ko(C(X)) (resp. K1(C(X))) is the cokernel (resp. kernel) of ¢.

Proof. For any G-C*-algebra A, the braided tensor product A X — is an exact functor from
the category of D(SU,(2))-algebras to that of SU,(2)-algebras. Thus, applying it to the trian-
gle (Z.2), we obtain an exact triangle of SU,(2)-algebras

(AR C)®? - (AR C)®? - (AR C(SU,(2)))®* — (Ax C)®[1].

This induces a 6-term exact sequence of the K3V« _groups.

Now, we have a natural identification AXIC ~ A as SU,(2)-algebras. Moreover, AXIC(SU,(2))
is naturally isomorphic to C(SU,(2)) ® Atyiv, where Ay, denotes is the C*-algebra A with the
trivial C'(SU,(2))-coaction. By the Green—Julg isomorphism and the Takesaki-Takai duality,

we have KfU‘I(Q)(C(SUq@)) ® Auiv) ~ Ki(A). Furthermore, the Green—Julg isomorphism
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together with the ergodicity on A implies that K 1S UC‘@)(A) is trivial. Thus, the above triangle

gives an exact sequence of the form

0— Ki(A) = KU (4)82 _ g5V (4)®2 _, [ (A) — 0.

It remains to identify the map f between KOS Uq(z)(A)®2 in the above exact sequence. First,
K5U“® (A)®2 can be identified with

R(U1)) ®nesu, @) Ky @ (A) ~ K§W(A)

because R(U(1)) is free of rank 2 over R(SU,(2)). If one follows the argument above the
theorem, we see that f can be identified with the action of z — 1 € R(U(1)) on Kéj(l)(A). Let
us take (1, z) as a basis of R(U(1)) over R(SU,(2)). Then, by 2% = (z + 271)z — 1, the action
of z on R(U(1)) can be expressed by the matrix

((1) ;1) e My(R(SU(2))).

This shows that z — 1 acts by the matrix of assertion. O

Example 7.5. Let us consider an ergodic action of SU,(2) of full quantum multiplicity, cf.
[5]. This means that the associated weighted graph has a single vertex, and its loops can be
labeled by a multiset S of positive real numbers J\;, of even cardinality when ¢ > 0, such that
S = S~ and such that the sum of all elements in S equals [2],. Let us denote by Fg some
real-valued matrix such that FZ = —sgn(q), and such that S forms the set of eigenvalues of
F*F (taking account of multiplicities). Then the ergodic action associated with our weighted
graph is the C*-algebra denoted A,(Fs, F') in [5] (which up to isomorphism does not depend
on the concrete choice of Fg, and where we recall that F is the matrix (L3])).

In this case, we have that KOSUC‘@) (A,(Fs, F)) = C, and the matrix ¢ from Theorem [.4 becomes

-1 -1
¢= ( 1 n-— 1> ’
where n is the number of loops in our graph. It follows that, for n # 2, the A,(Fs, F') have
Cuntz-algebra-like behaviour in that Ky (A,(Fs, F)) = 0 and Ko(A,(Fs, F)) = Z,—o.
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